Ветрогенератор

Ветрогенератор - это устройство для преобразования энергии ветра в электро-энергию, или в механическую для привода в движение механических устройств (например насос на воду). Прародителями современных ветрогенераторов были ветряные мельницы, и с развитием технологий и прихода эры электричества ветряные мельницы уже не только растирали зёрна в муку, или качали воду, но и вращали генераторы вырабатывающие электро-энергию.

Содержание:

Ветрогенераторы бывают промышленные, такие ветряки устанавливает государство или большие энергетические корпорации для обеспечения электроэнергией промышленных объектов. Промышленные ветровые турбины самые большие и мощные на сегодняшний день, мощность отдельных ветрогенераторов исчисляется мегаваттами, но такие ветряки не ставят по одному, а строят огромные ветропарки в местах где ветер наиболее подходящий для стабильной выработки электро-энергии, например на побережьях, или на открытых возвышенностях. Энергия от ветрогенераторов поступает напрямую в электросети, а стабильность и частоту вращения генераторов обеспечивают различные механизмы, например системы регулирования углов установки лопастей относительно набегающего потока ветра, так чтобы обороты ветроколеса, а значит и генератора были стабильными.

Ветропарк в море - промышленные ветрогенераторы

Ветропарк в Северном море, 80 ветрогенераторов суммарно производят 400мегаватт энергии, которой хватит на 455 000 домохозяйств. Ветро-парк находится примерно в 140 километрах от побережья Нижней Саксонии
Так-же существуют и коммерческие ветрогенераторы, которые устанавливают с целью продажи электро-энергии, или обеспечения энергией различных производств в тех местах где не хватает собственных мощностей, или электросети отсутствую вовсе. Такие ветро-электро-станции тоже состоят из множества ветрогенераторов различной мощности. Энергия от таких ветрогенераторов может поступать напрямую в электросеть если они вырабатывают стабильное переменное напряжение 220/380 вольт или белее. Или ветрогенераторы используются для зарядки большого массива аккумуляторов, с которого потом энергия преобразуется в переменное напряжение и подаётся в электросеть.

Существуют и обычные бытовые ветряки малой мощности для частного использования, для установки которых не требуется никаких разрешений если высота мачты не превышает 25 метров и ветрогенератор не является помехой для воздушных судов. Такие ветрогенераторы низковольтные и их основная задача заряжать аккумуляторы с напряжением 12/24/48 вольт, а уже из аккумуляторов берётся энергия, которая преобразуется в 220 вольт 50 Гц как в обычной розетке. Ветряки небольшой мощности часто ставят для обеспечения энергией своих частных домов, дач, подсобных хозяйств, или для питания небольших удаленных объектов.

Устройство и конструкции ветрогенераторов

Понятно что ветрогенераторы приводятся в движение энергией ветра, но это еще не всё, ветрогенератор состоит из нескольких узлов и основное это ветро-колесо и генератор. Ветряки горизонтального типа как правило имеют трёх-лопастные винты, которые работают за счёт подъёмной силы набегающего потока ветра. А вертикальные ветрогенраторы типа "Савониус" (бочка) вращаются за счёт давления ветра. Есть вертикальные ветряки использующие так-же подъёмную силу, например "Ротор Дарье" и другие ортогональные ветрогенераторы. У горизонтальных ветрогенераторов скорость вращения лопастей превышает скорость движения ветра обычно номинально в 5 раз, это позволяет использовать генераторы меньших размеров чем для вертикальных ветрогенераторов, так-как они не могут вращаться быстрее скорости ветра, за исключением ортогональных.

К примеру на ветрогенератор с диаметром ветроколеса 3 метра при скорости ветра 10м/с приходится 5.6 кВт ветровой энергии, но в механическую энергию вращения может преобразоваться максимум 49% энергии, для горизонтальных ветрогенераторов средний коэффициент преобразования энергии ветра 0.4, для вертикальных существенно ниже, для ветряков типа "Савониус" 0.1-0.25, а для ортогональных до 0.4.

Генератор с ветроколесом может быть соединён напрямую и тогда обороты ветро-колеса и генератора будут одинаковые, или может быть установлен редуктор для повышения оборотов генератора. В конструкциях больших ветрогенераторов, которые ставятся в местах со стабильным и мощным вытровым потоком для поддержания стабильных оборотов генераторв используют систему регулировки положения лопастей. Когда ветер усиливается, то лопасти поворачиваются в одну сторону увеличивая угол атаки набегающего потока ветра и ветро-колесо не набирает обороты, а когда ветер ослабевает, то наоборот чтобы ветряк не снизил обороты лопасти поворачиваются на большую быстроходность. Так-же обороты могут поддерживаться увеличением или уменьшением нагрузки на генератор, или тормозной системой. Таким образом генератор работает на одних и тех-же оборотах и даёт стабильное напряжение и частоту переменного тока, например 220 вольт 50 Гц, хотя может выдавать и тысячи вольт.

В небольших ветряках обороты генератора не стабилизируют так-как это очень сложно, да и такие ветряки ставят на небольшую высоту в различных районах где ветер может периодически совсем пропадать и быть очень не стабильным. Для стабильности работы ветро-электро-станции используют аккумуляторы, генератор заряжает аккумуляторы когда есть ветер, а брать энергию с них можно всегда, даже при полном штиле. А для защиты от ураганов применяют систему с уводом ветроколеса от ветра методом складывания хвоста, или тормозят ветро-колесо электро-тормозом.

Для зарядки аккумуляторов между ветряком и АКБ ставится контроллер, который следит за зарядкой АКБ, и при полном заряде чтобы не испортить аккумуляторы контроллер или тормозит винт закорачивая обмотки генератора, или сбрасывает лишнюю энергию на балласт, в качестве которого могут быть установлены тэнны для отопления, или просто большой резистор. Ветрогенератор с контроллером выступает в роли зарядного устройства для блока аккумуляторов, а сама энергия берётся именно из аккумуляторов, а не от ветряка.

Но в аккумуляторах постоянное низкое напряжение, которое бывает 12/24/48 вольт, а для обеспечения дома нужны 230 вольт, по-этому устанавливается инвертор, который преобразует постоянное напряжение в переменное 220 вольт. Но можно обойтись и без инвертора если все потребители рассчитаны на питания от низкого напряжения. Например если массив АКБ на 12 вольт, то можно использовать любые электро-приборы на 12 вольт, автомобильные зарядные устройства, телевизоры, светодиодные ленты и лампочки на 12 вольт, авто-чайники, авто-холодильники и многое другое.

Ветрогенератор - ветряная электростанция

ветрогенератор, контроллер, аккумуляторы

Типы и виды ветрогенераторров

Ветрогенераторы бывают двух основных типов, это горизонтальные и вертикальные. Горизонтальные классические ветряки имеют пропеллер - обычно трёх-лопастной, а вертикальные ветряки имеют ветро-колесо вращающееся вертикально. Классические ветряки самые популярные так-как при самой низкой стоимости имеют самую высокую эффективность. Чем выше быстроходность ветроколеса, тем меньше, а значит и дешевле требуется генератор, и чем легче сам генератор тем меньше на его изготовление нужно материало-затрат. А так-же чем выше ветрогенератор относительно земли тем эффективней выработка электро-энергии.

Классический ветрогенератор

Вертикальные ветряки типа "Савониус" или "Бочка" самые низко-оборотистые и малоэффективные ветряки, по-этому чтобы добиться той-же мощности что у горизонтального, такой ветряк придётся делать намного больше по размерам, ставить очень низко-оборотный генератор или мультипликатор, и так-как такую тяжёлую конструкцию не представляется возможным поднять на высокую мачту, то ветряк должен в общем по размерам в два раза больше чем горизонтальный, а генератор в пять-семь раз больше. От этого стоимость таких ветрогенераторов возрастает в пять раз в сравнении с классическими.

По этому ветряки типа "Савониус" не популярны и встречаются довольно редко, хотя в интернете довольно популярны из-за мифов о их эффективности, бесшумности и простоты. На самом деле КИЭВ таких ветряков всего 0.1-0.2 против 0.4 у классических ветяков, бесшумность тоже относительна так-как на ветрах от 7м/с шумит всё, даже деревья. Да и на счёт простоты тоже миф, намного проще на генератор поставить три лёгких и простых лопасти, чем ставить огромный ротор, который от урагана не защитить, и по этому нужна большая прочность конструкции. Пример такого самодельного генератора описан в этой статье - Вертикальный ветрогенератор своими руками

Вертикальный ветрогенератор

Ветрогенератор типа бочка
Так-же есть и другие типы вертикальных ветрогенераторов, например "Ротор Дарье", он имеет немного болший КИЭВ в сравнении с ветряком типа бочка, но у него очень низкий стартовый момент, и если лопастей всего две, то стартовать он сам не может, по-этому часто делают гибридный ротор Савониус+Дарье. Есть и другие виды со всякими изогнутыми лопастями, много-этажными полу-бочками, но на практике они не далеко ушли от обычной разрезанной бочки.

Вертикальные ветрогенераторы

Парусные ветрогенераторы по сути те-же горизонтальные ветряки, но из-за того что парусами покрыто всё ветроколесо и нет никакого аэродинамического профиля такие ветряки тихоходные и малоэффективные, зато имеют высокий крутящий момент при низких оборотах и за счет этого могут приводить в движение напрямую различные механизмы, например насос для подъёма воды. Аналоги парусного ветряка это много-лопастные ветряки с жёсткими лопастями.

Генераторы

Генераторы для ветряков самые обычные трёх-фазные, на подобие тех что используются в автомобилях, только в зависимости от мощности и номинальных оборотов из размеры будут значительно больше. Обмотка статора трёх-фазная, соединённая по схеме "звезда" , после соединения на выходе остаются три провода, которые идут на контроллер, а там уже с помощью диодного моста переменное напряжение преобразуется в постоянное, то-есть плюс и минус. Ротор генератора на неодимовых магнитах, электро-возбуждение как в авто-генераторах здесь не используется так-как катушка возбуждения потребляет энергию.

Генераторы для ветрогенераторов

Для повышения оборотов часто используют мультипликатор, который повышает обороты и тем самым можно получить или больше мощности с имеющегося генератора, или использовать генератор меньших размеров и стоимости. Часто мультипликаторы применяют в вертикальных ветрогенераторах так-как ветроколесо у них вращается значительно медленнее чем у горизонтальных классических ветряков.

Генератор самая дорогая часть ветрогенератора если не считать мачту, которая может быть очень дорогой. По-этому обороты ветрогеннраторов стараются сделать как можно выше чтобы ставить генераторы поменьше. Собственно по этому горизонтальные трёх-лопастные ветрогенераторы получили такое распространение. Там высокие обороты и не требуется мультипликатор для поднятия оборотов генератора, это намного удешевляет и упрощает конструкцию, и при этом у неё самый высокий КПД.

Генератор можно изготовить и самому, да и сделать полностью ветрогенератор своими руками, на страницах сайта есть вся информация по расчёту генераторов и ветряков в целом. Генераторы изготавливают из асинхронных двигателей, из авто-генераторов, а так-же очень популярны так называемые дисковые аксиальные генераторы. Про ветряки на таких генераторах можно почитать в этом разделе Дисковые аксиальные ветряки

Цены на ветрогенераторы и применение

Ветрогенераторы стоят конечно дорого, так-как это сложное оборудование не имеющее массовое распространение как например телевизоры или автомобили. Так-же кроме самого ветрогенератора в составе ветро-электростанции присутствуют аккумуляторы, контроллер и инвертор, так-же мачта тоже дорогая и неотъемлемая часть ветрогенератора.

Ветрогенераторы мощностью 300 ватт очень слабые и надо понимать что свои заявленные 300 ватт в час они вырабатывают при номинальном ветре 10-12м/с, а когда ветер 4-5м/с, то выработка составит всего 30-50ватт*ч. Такие ветряки вырабатывают очень мало энергии, которой хватит к примеру на питание мелкой электроники, экономного светодиодного освещения. Не стоит рассчитывать что такой ветряк сможет обеспечить энергией холодильник, телевизор и свет во всём доме. Выработка энергии напрямую зависит от наличия ветра в месте установки ветряка.

Скажем при среднегодовой скорости ветра 3м/с выработка 300 ватт ветряка составит всего около 3-6 кВт в месяц, ну а если ветер будет дуть каждый день со средней скоростью 5м/с, то выработка составит 15-20 кВт, но такие ветреные места бывают не везде.

Цены небольших ветровых турбин начинаются от 15 000 рублей за ветрогенератор с контроллером без аккумуляторов и мачты. А полный комплект состоящий из ветрогенератора, контроллера, аккумуляторов, мачты, инвертора обойдётся от 50 000 рублей и выше.

Для обеспечения энергией небольшого дома или дачи ветрогенератор понадобится мощностью от 1кВт, выработка энергии опять-же зависит от наличия ветра в вашей местности, она может составить 30-100 кВт в месяц. Такого ветрогенератора в принципе хватит на освещение, телевизор, компьютер, насос, а вот с круглосуточной работой большого холодильника ветрогенератор может не справится. Вообще когда ветрогенератор устанавливается для постоянного обеспечения энергией жилого помещения, где энергия требуется каждый день, то дополнительно устанавливают бензиновый или дизельный генератор, который в периоды длительного отсутствия ветра заряжает аккумуляторы. Генератор это необходимое устройство чтобы обеспечить полную бесперебойность автономной ветряной электростанции.

Стоимость полного комплекта от 150 000 рублей, и может доходить до 300-400 т.рублей. Чем больше ёмкость аккумуляторов тем больше времени можно питаться от АКБ при отсутствии хорошего ветра. Так-же аккумуляторы нельзя разряжать глубоко, от этого сильно сокращается срок службы. По этому если к примеру в сутки тратится 2 кВт энергии, то энергии а аккумуляторах должно помещаться как минимум 10 кВт.

Если планируется обеспечить энергией свой частный дом или небольшое хозяйство, то ветряк понадобится мощностью 3-5 кВт. Стоимость полного комплекта от 300 000 рублей и до 1-го миллиона рублей. Здесь уже серьёзная мощность и потребление, по-этому кроме цены ветряка дорогой получается мачта, контроллер, мощный инвертор, и аккумуляторов нужно много чтобы стабильно обеспечивать энергией всю домашнюю бытовую технику.

Если хочется чтобы ветрогенератор ещё отапливал дом, то нужно смотреть на мощности от 10 кВт. Вообще чтобы автономная электростанция была оптимальна по выработке электо-энергии, то просто одного ветрогенератора будет не достаточно. В системе должны быть и солнечные батареи, и бензо-генератор на случай когда совсем нет ни солнца ни ветра. Контроллер должен управлять и ветрогенератором, и солнечными панелями, и заводить бензо-генератор когда энергия на исходе. Всё это оборудование стоит дорого, но если нет возможности подключится к электросетям, то выход вкладывать деньги в ветро-солнечную электростанцию.

Пример использования ветрогенераторов и солнечных батарей для обеспечения электро-энергией частного дома

Ветро-солнечная электростанция

Ветро-солнечная электростанция обеспечивает электроэнергией все потребности частного дома, а это около 300 кВт*ч в месяц. В системе два ветрогенератора общей номинальной мощностью 3кВт, и солнечные панели номинальной мощностью 1,8кВт. Стоимость этой электростанции обошлась в 350 000 рублей. Подробнее в статье Собственная ветро-солнечная электростанция