Солнечные панели

Солнечные панели или модули (батареи) - состоят из соеденённых последовательно, а иногда и параллельно-последовательно фото-электрических ячееек, Сами солнечные элементы изготавливаются из полупроводниковых материалов, которые напрямую преобразуют солнечный свет в электричество.

Солнечные панели бывают различных видов, но в основе выработки электроэнергии лежит кремний, правда в последнее время появились и другие типы. Но большая часть из выпускаемых солнечных панелей вырабатывают энергию на основе кремния. Кремний это полупроводник, он широко распространен на земле в виде песка, который является диоксидом кремния, также известного под именем кварцит. Кремний широко применяется в современной электронике, процессоры, транзисторы, из которых делается вся современная вычислительная техника сделаны на основе кремния.

>

Солнечный элемент состоит из металлической подложки, на которую нанесён тыльный плюсовой контакт, на него нанесён тонкий слой полупроводника P типа. Далее идёт разделяющий. Следующий слой N типа. И завершает этот пирог сетка, собирающая плюсовые выводы N перехода. На элементы нанесено анти-отражающее покрытие, которое и придаёт элементам характерный темно-синий цвет.

Солнечные элементы разделяются по типу, бывают монокристаллические, поликристаллические, и из аморфного кремния (тонкопленочный). Различие между этими формами в том, как организованы атомы кремния в кристалле. Различные по типу элементы имеют разный КПД преобразования энергии света. Моно и поликристаллические элементы имеют почти одинаковый КПД, который выше, чем у солнечных элементов, изготовленных из аморфного кремния. Но КПД моно и поли может значительно разнится из-за качества изготовления элементов, в принципе это уместно ко всем типам солнечных элементов.

>

Моно-кристаллические элементы дороже в производстве так-как процесс выращивания кристаллов происходит при более высокой температуре, и процент очищения кремния составляет практически 100 %. К тому-же кристаллы выращиваются строго в одном направлении, что повышает кпд до 22-24% при направленном свете. Но эффективность таких элементов резко снижается когда свет падает не перпендикулярно, а под углом. КПД монокристаллических панелей для космической отрасли по некоторым данным достигло 38%, но КПД массово выпускаемых моно-панелей около 17-22%

Поли-кристаллические элементы дешевле в производстве так-как процесс образования кристаллов происходит при низкой температуре. Но кристаллы образуют неоднородную массу и разнонаправлены. Разнонаправленность кристаллов снижает КПД, но такие элементы лучше работают при ненаправленном и рассеянном свете. Из-за более низкого КПД поликристаллические панели имеют примерно на 10% больше площади, соответственно в пасмурную погоду они на 10% эффективнее чем моно. КПД массово выпускаемых поликристаллических панелей сейчас 12-18%.

Вообще чем хуже КПД тем больше нужно солнечных батарей, а вот цена будет примерно одинаковой так-как панели с высоким КПД дороже. Но в пасмурную погоду КПД в основном зависит от площади самих панелей, и чем больше их тем лучше. Но разница будет очень маленькой так-как мощность панелей при плотно затянутом тучами небе падает в 15-20 раз. И например если у вас панель на 100 ватт, то она будет выдавать всего 5-6 татт, и тут уже не важно что там лучше или хуже вырабатывает электроэнергию так-как разница в 10% даст в реале преимущество всего в 0,5 ватта. А если массив солнечных батарей будет на 2кВт, то разница будет всего в 10-20 ватт.

Аморфные солнечные панели имеют низкий КПД, около 6%, но они заметно ниже по цене, и имеют преимущество при рассеянном свете. Кремний в этих солнечных батареях расходуется значительно меньше так-как наносится методом напыления материала в вакууме. При этом наносить материал можно на стекло, пластик или металл. По-этому в основном гибкие солнечные панели именно аморфные. Но аморфный кремний значительно быстрее деградирует, и в первые два года панели могут потерять до 20% мощности, далее интенсивность снижения мощности замедляется.

В последние годы разработаны новые типы материалов для солнечных элементов. Например, тонкопленочные фотоэлектрические элементы из медь-индий-диселенида и из теллурида кадмия. Эти типы СП в последнее время также коммерчески используются. Технологии их производства постоянно развиваются. За последнее десятилетие КПД тонкопленочных элементов вырос примерно в 2 раза, и уже достигает 12%

Так-же последние технологии используют гибридные методы. Так появились элементы, которые имеют как кристаллический переход, так и тонкий полупрозрачный аморфный переход, расположенный над кристаллическим. Так как кристаллы и аморфный кремний наиболее эффективно преобразуют только часть спектра света, и эти спектры немного отличаются, применение таких гибридных элементов позволяет повысить общий КПД солнечного элемента.